A Transformer Supplying A House With 240/120 V Has A Secondary That Is Center Tapped. The Conductor Connected (2024)

Physics High School

Answers

Answer 1

The conductor connected to the center of a transformer supplying a house with 240/120 V that has a secondary center tapped is called the "neutral" conductor. This conductor provides a return path for the current and helps to balance the electrical load in the system.

A conductor is a material that allows the flow of electric current through it with minimal resistance. Metals are the most common conductors due to their free electrons, which are easily displaced when a voltage is applied.

Conductors have low resistance, high thermal conductivity, and are often ductile and malleable. They are used in a wide range of electrical and electronic devices, including wiring, motors, generators, and electronic components. Examples of common conductors include copper, aluminum, gold, and silver.

To learn more about conductor refer here:

https://brainly.com/question/18084972#

#SPJ11

Related Questions

The human eye is most sensitive to light having a frequency of about 5.30 1014 Hz, which is in the yellow-green region of the electromagnetic spectrum. How many wavelengths of this light can fit across the width of your thumb, a distance of about 2.0 cm

Answers

Answer:

The human eye is most sensitive to light having a frequency of about 5.30 1014 Hz, which is in the yellow-green region of the electromagnetic spectrum. Approximately 35,337 wavelengths of this light can fit across the width of your thumb, a distance of about 2.0 cm

Explanation:

The speed of light in a vacuum is approximately 3.00 x 10^8 m/s. We can use the equation:

c = fλ

where c is the speed of light, f is the frequency, and λ is the wavelength.

Rearranging this equation to solve for wavelength, we get:

λ = c / f

Substituting in the given frequency of 5.30 x 10^14 Hz, we get:

λ = (3.00 x 10^8 m/s) / (5.30 x 10^14 Hz)

λ ≈ 5.66 x 10^-7 m

This is the wavelength of the yellow-green light in meters. To find how many wavelengths can fit across the width of your thumb (2.0 cm or 0.020 m), we can divide the width by the wavelength:

Number of wavelengths = 0.020 m / 5.66 x 10^-7 m

Number of wavelengths ≈ 35,336.8

Therefore, approximately 35,337 wavelengths of yellow-green light can fit across the width of your thumb.

To learn more about electromagnetic spectrum refer here:

https://brainly.com/question/23727978#

#SPJ11

what is your position relative to the 9 dme arc and the 206 radial of the gromo three departure procedure

Answers

Is there a way for me to repost your question? I wish I could

Solar panel is oriented perpendicular to (electromagnetic) solar radiation. The intencity of the radiation is 2 kW/m2 . 75% of the radiation is absorbed by the surface of the panel and 25% is reflected (at normal angle). The area of the panel is 4.9 m2 . What is the magnitude of force acting on the panel due this radiation.

Answers

If the area of the panel is 4.9 m², the magnitude of the force acting on the solar panel due to the absorbed radiation is 2.45 x 10^-5 N

The first step in solving this problem is to calculate the power absorbed by the solar panel. The power absorbed is equal to the product of the intensity of the radiation, the area of the panel, and the fraction of the radiation absorbed by the panel:

Power absorbed = Intensity x Area x Fraction absorbed
Power absorbed = 2 kW/m² x 4.9 m2 x 0.75
Power absorbed = 7.35 kW

Next, we need to calculate the force acting on the solar panel due to the absorbed radiation. This force is equal to the power absorbed divided by the speed of light:

Force = Power absorbed / Speed of light
Force = 7.35 kW / 299,792,458 m/s
Force = 2.45 x 10^-5 N

Therefore, the magnitude of the force acting on the solar panel due to the absorbed radiation is 2.45 x 10^-5 N.

More on force: https://brainly.com/question/14038334

#SPJ11

A wire carrying a 20.0 A current passes between the poles of a strong magnet such that the wire is perpendicular to the magnet's field, and there is a 2.25 N force on the 5.00 cm of wire in the field. What is the average field strength (in T) between the poles of the magnet

Answers

The force on a current-carrying wire in a magnetic field is given by the formula:

F = BIL

where F is the force in Newtons, B is the magnetic field strength in Tesla, I is the current in Amperes, and L is the length of wire in the magnetic field in meters.

In this case, we know that the current is 20.0 A and the length of wire in the field is 5.00 cm (or 0.050 m), and the force is 2.25 N. We can rearrange the formula to solve for the magnetic field strength:

B = F/(IL)

Substituting the given values, we get:

B = 2.25 N / (20.0 A x 0.050 m) = 2.25 N / 0.0100 T = 225 T

Therefore, the average field strength between the poles of the magnet is 225 T. This value is extremely high and not typical for most practical magnetic fields.

To know more about the average visit :

https://brainly.com/question/24057012

#SPJ11

47 . Two planets are on a collision course, heading directly toward each other at 0.250c. A spaceship sent from one planet approaches the second at 0.750c as seen by the second planet. What is the velocity of the ship relative to the first planet

Answers

The velocity of the spaceship relative to the first planet is -0.8824c, which means it is moving away from the first planet at 0.8824 times the speed of light.

v = (v₁ + v₂) / (1 + (v₁ *v₂/c²))

where v is the relative velocity between two objects, v₁ is the velocity of the first object relative to a third reference point, v₂ is the velocity of the second object relative to the same reference point, and c is the speed of light.

In this case, we can consider the first planet as our reference point, and we have the following values:

- v₁ = 0 (since the first planet is stationary)
- v₂ = -0.75c (since the spaceship is approaching the second planet at 0.750c, which is a negative velocity relative to the second planet)
- c = 1 (since we're using units where the speed of light is 1)

Plugging these values into the formula, we get:

v = (0 + (-0.75)) / (1 + (0*(-0.75)/1²))
v = -0.8824c

Therefore, the velocity of the spaceship relative to the first planet is -0.8824c, which means it is moving away from the first planet at 0.8824 times the speed of light.

To know more about collision, refer

https://brainly.com/question/24915434

#SPJ11

. The wavelengths of visible light range from approximately 400 to 750 nm. What is the corresponding range of photon energies for visible light

Answers

The corresponding range of photon energies for visible light is approximately [tex]2.65 * 10^{-19} J to 4.96 * 10^{-19} J[/tex].

The energy of a photon is directly proportional to its frequency or inversely proportional to its wavelength. Therefore, the range of photon energies for visible light can be calculated using the equation E=hc/λ, where E is the energy of the photon, h is Planck's constant, c is the speed of light, and λ is the wavelength of the light.
Substituting the minimum and maximum wavelengths of visible light, we get:
E_min = hc/λ_max = [tex](6.626 * 10^{-34} Js)(3.0 * 10^8 m/s)/(750 * 10^{-9} m) = 2.65 * 10^{-19} J[/tex]
E_max = hc/λ_min = [tex](6.626 * 10^{-34} Js)(3.0 * 10^8 m/s)/(400 * 10^{-9} m) = 4.96 * 10^{-19} J[/tex]

To learn more about wavelength click here https://brainly.com/question/13533093

#SPJ11

BRAINLIEST 100 PTS NEED ASAP!!!!!!An asteroid was discovered. It is estimated to have a mass of 2.14 x 1021 kg and is moving at a speed of 17,900 m/s.What is the Amount of Kinetic energy found in This astroid.

Answers

Answer:3.500kg per m/s

Explanation: kinetic energy = 0.5× mass × velocity^2

2.14×1021=2184.94 is mass

17,900 is velocity

so,

kinetic energy = 0..5× mass × velocity^2

= 0.5×2184.94×17,900^2

= 3.500kg per m/s

A flywheel rotating about an axis through its center starts from rest, rotates with constant angular acceleration for 2 seconds while making one complete revolution and thereafter maintains constant angular velocity. How long does it take the wheel to make a total of 6 full revolutions

Answers

To solve this problem, we need to first find the angular acceleration and then the final angular velocity of the flywheel. After that, we can determine the time it takes to complete the remaining 5 revolutions at constant angular velocity.

1. Determine the angular acceleration:
Since the flywheel makes one complete revolution during the 2 seconds of angular acceleration, it rotates through an angle of 2π radians (1 revolution = 2π radians). Using the equation θ = ω₀t + (1/2)αt², where θ is the angle in radians, ω₀ is the initial angular velocity (0 since it starts from rest), α is the angular acceleration, and t is the time (2 seconds), we can solve for α: 2π = 0(2) + (1/2)α(2)²
α = 2π/2² = π rad/s²
2. Determine the final angular velocity:
Using the equation ω = ω₀ + αt, we can find the final angular velocity ω:
ω = 0 + π(2) = 2π rad/s
3. Calculate the time to complete the remaining 5 revolutions:
Now that the flywheel has a constant angular velocity of 2π rad/s, we can calculate the time it takes to complete the remaining 5 revolutions. To do this, we need to find the angle θ for 5 revolutions (5 * 2π = 10π radians) and use the equation θ = ωt: 10π = (2π)t
t = 5 seconds
4. Determine the total time for 6 revolutions:
Finally, we add the initial 2 seconds of acceleration to the 5 seconds it takes to complete the remaining revolutions:
Total time = 2 + 5 = 7 seconds
So, it takes the flywheel 7 seconds to make a total of 6 full revolutions.

For more information on angular acceleration see:

https://brainly.com/question/29428475

#SPJ11

An Atwood machine consists of a mass of 3.5 kg connected by a light string to a mass of 6.0 kg over a frictionless pulley with a moment of inertia of 0.0352 kg ∙ m2 and a radius of 12.5 cm. If the system is released from rest, what is the speed of the masses after they have moved through 1.25 m if the string does not slip on the pulley?

Answers

2.28m/s is the speed of the masses after they have moved through 1.25 m if the string does not slip on the pulley

What does string force mean?

The pulling force transmitted axially by a string, rope, chain, or similar object, or by each end of a rod, truss member, or similar three-dimensional object is referred to as tension. The action-reaction pair of forces acting at each end of the aforementioned elements may also be referred to as tension.

Ki+Ui = K + Uf

Kf+Uf-(Ki+ U₁) = (Kƒ-K;) + (Uƒ- U₁)=0JK =0J,

Uf-Ui = m1ghi+m2gh2f-(mighii+m2ghzi) = mig(hif-hii)+m2g h2i)

h=1.25m

Uf-U₁ = m1gh-ma2gh = gh(m1 - m2)

Now we have:

(Kf-Ki) + (Uf-Ui) = (m1+m2 +i/r2)v^2/2 +gh(m-m2) = 0.J

v =sqrt (2gh(m2-mi) /mi+m2+ i/r2)

=sqrt(2(9.8m/s2)(1.25m)(6.0kg-3.5kg) /3.5kg+6.0kg+0.0352 kgm2/ (0.125m)2)

=2.28m/s

To learn more about tension use:

https://brainly.com/question/24994188

#SPJ4

A delta connection has 30 A of current flowing through each phase winding. How much current is flowing through each of the lines supplying power to the load

Answers

current is flowing through each of the lines supplying power to the load would be the sum of the currents in each line, which in this case would be 30 A x 3 = 90 A.

What is current?

Current is the flow of electric charge per unit of time through a conducting material, driven by a potential difference (voltage) between two points in the material. It is measured in amperes (A).

What is power?

Power is the rate at which work is done or energy is transferred, measured in watts (W). It is calculated by dividing the amount of work or energy by the time taken to perform the work or transfer the energy.

According to the given information:

In a delta connection, the line current is equal to the phase current. Therefore, 30 A of current is flowing through each of the lines supplying power to the load. This is because the load is directly connected to each line, and the current flows through each line and then returns to the source through the other lines. So, the total current flowing through the load would be the sum of the currents in each line, which in this case would be 30 A x 3 = 90 A.

To know more about current,power visit:

https://brainly.com/question/28891489

#SPJ11

We can locate a sound in part because it arrives at different time and different loudness in each ear. This is called:

Answers

The phenomenon described is called binaural hearing.

It refers to the ability of the human auditory system to perceive and locate sound sources in space through the use of both ears. This is possible because sound waves travel at different speeds to each ear, and the head acts as a barrier that causes sound waves to diffract and arrive at each ear with different intensity and phase.

he brain uses these differences in timing, intensity, and phase to compute the location of the sound source. Binaural hearing also allows for the ability to detect and distinguish between different sound frequencies, which is important for speech perception and spatial awareness.

To know more about binaural hearing, click here:-

https://brainly.com/question/29572149

#SPJ11

If the vertical distance between your eyes and the beetle is 25 cm , how far away (in meters) should you stand in order to see the green light

Answers

To calculate the distance you need to stand from the green light, we need more information about the situation. However, assuming that the green light is located at the same height as your eyes and directly in front of you, we can use basic trigonometry. If the vertical distance between your eyes and the beetle is 25 cm, we can use this as one side of a right triangle. Let's say the other side is the distance between you and the green light, which we'll call x.

Using the Pythagorean theorem, we get:

x^2 + 25^2 = d^2

where d is the distance between you and the green light in meters.

Simplifying, we get:

x^2 + 625 = d^2

To solve for d, we also need to know the value of x. Without this information, we cannot give a precise answer. However, we do know that the distance between you and the green light must be greater than or equal to 25 cm, since that is the vertical distance between your eyes and the beetle.

In conclusion, to see the green light from a distance of 25 cm vertical distance, we need more information about the situation to calculate the required distance in meters.
we need to find the distance at which the green light from the beetle becomes visible given the vertical distance between your eyes and the beetle.

1. First, we need to convert the vertical distance from centimeters to meters: 25 cm = 0.25 meters.
2. Next, we need to consider the angle of visibility for the green light. Typically, the angle of visibility for human eyes is around 0.1 degrees for clear vision.
3. Using the tangent function in trigonometry, we can calculate the distance required for the green light to be visible:
tan(angle) = vertical distance / distance to stand
4. Plug in the values: tan(0.1 degrees) = 0.25 meters / distance to stand
5. Solve for the distance to stand: distance to stand = 0.25 meters / tan(0.1 degrees)

After calculating, you should stand approximately 143.24 meters away from the beetle to see the green light, considering the vertical distance of 0.25 meters.

For more information on trigonometry visit:

brainly.com/question/11371684

#SPJ11

A satellite, initially at rest in deep space, separates into two pieces, which move away from each other. One piece has a rest mass of 190 kg and moves away with a speed 0.500c, and the second piece has a rest mass of 250 kg and moves in the opposite direction. What is the speed of the second piece

Answers

The speed of the second piece is 0.5 times the speed of light.

To solve this problem, we can apply the conservation of momentum and the conservation of relativistic mass.

Given:

Mass of the first piece ([tex]m1[/tex]) = 190 kg

Speed of the first piece ([tex]v1[/tex]) = 0.500c (where c is the speed of light)

Mass of the second piece ([tex]m2[/tex]) = 250 kg

Speed of the second piece ([tex]v2[/tex]) = ?

According to the conservation of momentum, the total momentum before and after the separation should be equal. In this case, the initial total momentum is zero since the satellite was initially at rest. Therefore, the total momentum after the separation should also be zero.

Momentum of the first piece [tex](p1) = m1 * v1[/tex]

Momentum of the second piece [tex](p2) = m2 * v2[/tex]

Since the two pieces move in opposite directions, we need to consider the direction of the momentum as well. Let's assume the positive direction is the direction of the first piece.

The total momentum after separation is given by:

Total momentum = [tex]p1 - p2[/tex] = 0

Substituting the expressions for momentum:

[tex]m1 * v1 - m2 * v2 = 0[/tex]

Now we can solve for [tex]v2[/tex]:

[tex]v2 = (m1 * v1) / m2[/tex]

Substituting the given values:

[tex]v2[/tex] = (190 kg * 0.500c) / 250 kg

Calculating the result:

[tex]v2[/tex]= 0.5c

Therefore, the speed of the second piece is 0.5 times the speed of light (0.5c).

To learn more about direction, refer below:

https://brainly.com/question/13899230

#SPJ11

A ________ fault has a vertical fault plane and shows movement parallel to the orientation of the fault.

Answers

A vertical fault plane with parallel movement is called a dip-slip fault.

Dip-slip faults are categorized by their vertical fault plane and movement parallel to the orientation of the fault.

These faults are caused by tensional or compressional forces acting on rock layers.

There are two types of dip-slip faults: normal and reverse.

A normal fault occurs when the hanging wall moves down relative to the footwall due to tensional forces.

A reverse fault occurs when the hanging wall moves up relative to the footwall due to compressional forces.

Dip-slip faults can also lead to the formation of fault scarps, which are steep slopes created by the displacement of rock layers.

These fault systems can have significant impacts on geologic features and structures, such as mountains and valleys.

For more such questions on movement, click on:

https://brainly.com/question/30015054

#SPJ11

A 5-uF capacitor is charged to 30 V and is then connected across a 10-mH inductor. What is the maximum current in the circuit

Answers

The circuit's maximum current is [tex]I_{max}[/tex] = 1.73 A.

The greatest continuous current, measured in amperes, that a conductor can carry while in operation without going above its temperature rating is known as ampacity. The term "current-carrying capacity" is sometimes used. When the motor is running at its maximum speed and there is no load in one direction, the maximum current flow occurs, at which point operation will quickly switch to the opposite direction.

The largest amount of current that an output is capable of providing for brief periods of time is known as the peak current. When an electrical device or power source is turned on for the first time, a large initial current known as the peak current flows into the load, starting at zero and increasing until it reaches a peak value.

We can use the formula for the maximum current in an LC circuit:[tex]I_{max} = v/\sqrt{L/C} \\I_{max} = 30/\sqrt{10 * 10^{-5}*5 }[/tex]

[tex]I_{max}[/tex] = 1.73 A

Learn more about current visit: brainly.com/question/1100341

#SPJ4

A 2.0-cm-wide diffraction grating has 1000 slits. It is illuminated by light of wavelength 510 nm .What are the angles of the first two diffraction orders

Answers

The angles of the first two diffraction orders are approximately 0.146° and 0.292°.

The angles of the first two diffraction orders for a 2.0-cm-wide diffraction grating with 1000 slits, illuminated by light with a wavelength of 510 nm.

To calculate the angles, we can use the diffraction grating equation:

n × λ = d × sin(θ)

where n is the order of the diffraction (1 for the first order, 2 for the second order), λ is the wavelength of the light (510 nm), d is the distance between adjacent slits, and θ is the angle of the diffraction.

Step 1: Calculate the distance between adjacent slits (d)
The grating has 1000 slits and is 2.0 cm wide. Convert the width to nm and find the distance between adjacent slits.

2.0 cm × (10⁷ nm/cm) = 2.0 × 10⁸ nm

d = (2.0 × 10⁸ nm) / 1000 slits = 2.0 × 10⁵ nm

Step 2: Find the angles for the first and second diffraction orders (θ1 and θ2)
Use the diffraction grating equation for both n = 1 (first order) and n = 2 (second order).

For the first order (n = 1):
sin(θ1) = (1 × 510 nm) / (2.0 × 10⁵ nm)
sin(θ1) = 0.00255
θ1 = arcsin(0.00255) ≈ 0.146°

For the second order (n = 2):
sin(θ2) = (2 × 510 nm) / (2.0 × 10⁵ nm)
sin(θ2) = 0.0051
θ2 = arcsin(0.0051) ≈ 0.292°

So, the angles of the first two diffraction orders are approximately 0.146° and 0.292°.

To know more about first and second diffraction orders :

https://brainly.com/question/14703717

#SPJ11

Sketch to scale the Doppler chirps for a radar with 3-cm wavelength, |-10 m, u=7.5 km s-1, at R = 500 km. Show filter limits for石=25 m. Repeat for 30-cm wavelength.

Answers

The Doppler chirp scale for a 3-cm wavelength radar is 12.5 kHz. The velocity of -10 m and u=7.5 km/s at a distance of 500 km result in a Doppler shift of -376 Hz.

The filter limits would be 312.5 Hz for a range resolution of 25 m. Doppler chirp scale for a radar with a 30-cm wavelength is 1.25 kHz. The velocity of -10 m and u=7.5 km/s at a distance of 500 km result in a Doppler shift of -37.6 Hz. The filter limits would be 31.25 Hz for a range resolution of 25 m.

The Doppler effect is used by radar systems to calculate target velocity. The target's velocity and the radar's frequency both influence the Doppler shift. both the cosine of the angle between the motion direction and the radar beam and the signal. We are interested in the Doppler shift produced by a target at a distance of 500 km with a velocity of -10 m and u=7.5 km/s. In this example, the radar has a wavelength of 3 cm or 30 cm.

We employ the following formula to get the Doppler shift:

F = 2V*Cos()/c

v is the target velocity, f is the radar frequency, is the angle between the target velocity and the radar beam, and c is the speed of light, where f is the Doppler shift.

We may get the Doppler shift for each radar wavelength by assuming that there is a 0 degree angle between the target velocity and the radar beam.

The radar system can distinguish between targets that are at least 25 m apart in range, thus we also want to figure out the filter limits for a range resolution of 25 m. The frequency range that this range resolution corresponds to is the filter limitations.

To determine the filter limitations, we must first determine the The rate at which the radar frequency shifts during a pulse is known as the Doppler chirp scale. The inverse of the pulse duration determines the Doppler chirp scale, which is represented by:

F_chirp = T_pulse / 2.

where T_pulse is the length of the pulse.

Finally, by multiplying the range resolution by the Doppler chirp scale and dividing by 2, we can determine the filter limits. The frequency range that matches the range resolution is the outcome.

learn more about wavelength here:

https://brainly.com/question/13533093

#SPJ11

At the core of nearly every galaxy is higher mass black hole. The first one that was conclusively observed is the one at the center of the Milky Way with a mass of more than 4 million solar masses. These black holes at the centers of glaxies are known as a

Answers

Supermassive black holes are very massive black holes found at the center of most galaxies, including the Milky Way, with millions to billions of solar masses.

What is galaxy?

A galaxy is a vast, gravitationally bound system that consists of stars, gas, dust, and dark matter. They come in many shapes and sizes, and our own Milky Way is just one of billions in the universe.

What us black hole?

A black hole is an extremely dense region in space where the gravitational pull is so strong that nothing, not even light, can escape it. They form when massive stars collapse in on themselves.

According to the given information:

The black holes at the centers of galaxies are known as supermassive black holes. They are significantly larger than the stellar black holes formed by the collapse of a single star and can have masses ranging from millions to billions of times that of our Sun. These supermassive black holes play a crucial role in the evolution of galaxies and their surrounding environment, affecting the motions of stars and gas, and even influencing the formation of new stars. The study of supermassive black holes and their properties remains an active area of research in astrophysics.

To know more about galaxy visit:

https://brainly.com/question/31361315

#SPJ11

A 10.0-g bullet moving at 300 m/s is fired into and embeds itself in, a 2.00-kg block attached to a spring with a force constant of 19.6 N/m and having neglible mass. If the block rests on a frictionless surface, what is the maximum compression of the spring

Answers

Answer:

A 10.0-g bullet moving at 300 m/s is fired into and embeds itself in, a 2.00-kg block attached to a spring with a force constant of 19.6 N/m and having neglible mass. If the block rests on a frictionless surface, The maximum compression of the spring is 0.159 m.

Explanation:

We can use conservation of momentum to determine the velocity of the block and bullet together after the collision. We can then use this velocity and the force constant of the spring to determine the maximum compression of the spring using the formula for the potential energy stored in a spring.

Let's begin by calculating the velocity of the block and bullet together after the collision using conservation of momentum:

m_bullet * v_bullet = (m_block + m_bullet) * v_combined

where:

m_bullet = 10.0 g = 0.0100 kg (mass of bullet)

v_bullet = 300 m/s (velocity of bullet)

m_block = 2.00 kg (mass of block)

v_combined = velocity of block and bullet together after the collision

Solving for v_combined:

v_combined = m_bullet * v_bullet / (m_block + m_bullet)

= 0.0100 kg * 300 m/s / (2.00 kg + 0.0100 kg)

= 4.48 m/s

Now we can use this velocity and the force constant of the spring to determine the maximum compression of the spring using the formula for the potential energy stored in a spring:

PE_spring = (1/2) * k * x^2

where:

k = 19.6 N/m (force constant of spring)

x = maximum compression of the spring

At maximum compression, all of the kinetic energy of the block and bullet system is stored as potential energy in the spring, so we can set the initial kinetic energy equal to the potential energy stored in the spring:

(1/2) * (m_block + m_bullet) * v_combined^2 = (1/2) * k * x^2

Solving for x:

x = sqrt((m_block + m_bullet) * v_combined^2 / k)

= sqrt((2.00 kg + 0.0100 kg) * (4.48 m/s)^2 / 19.6 N/m)

= 0.159 m

Therefore, the maximum compression of the spring is 0.159 m.

To learn more about compression refer here:

https://brainly.com/question/14828391#

#SPJ11

During the gravitational collapse of a star, its radius R can shrink to arbitrarily small values. This means that the escape velocity can increase to arbitrarily large values. When the escape velocity exceeds the speed of light, light itself cannot leave the surface of the star. In this case, the star becomes Select one: a. Black dwarf. b. Neutron star. c. Black body. d. Black hole. e. All of the above.

Answers

The correct answer is (d)Black hole.

During the gravitational collapse of a star, the increasing escape velocity can lead to the formation of a singularity, a point of infinite density and zero volume, which is surrounded by an event horizon. This is what defines a black hole, where the gravitational pull is so strong that nothing, not even light, can escape. So, when the escape velocity exceeds the speed of light, the star becomes a black hole.
During the gravitational collapse of a star, its radius R can shrink to arbitrarily small values, causing the escape velocity to increase to arbitrarily large values. When the escape velocity exceeds the speed of light, light itself cannot leave the surface of the star. In this case, the star becomes a d. Black hole.

To learn more about Black hole. Click this!

brainly.in/question/16129968

#SPJ11

when a charged ruler attracts small pieces of paper, somtimes a piece jumps quickly away after touching the ruler. explain

Answers

When a charged ruler attracts small pieces of paper, the paper pieces become charged by induction. The charged ruler induces a charge of opposite polarity on the side of the paper facing the ruler and a charge of the same polarity on the side facing away from the ruler.

If a piece of paper jumps quickly away after touching the ruler, it may be due to the fact that the charge on the paper is not uniformly distributed. When the paper touches the charged ruler, the charge is transferred between them, and the paper may become charged with a higher concentration of charge in one particular spot.

This concentrated charge creates a strong electric field that interacts with the electric field of the charged ruler. If the electric field of the paper is strong enough, it can overcome the attractive force between the ruler and the paper, causing the paper to jump quickly away.

Learn more about charged by induction

https://brainly.com/question/10254645

#SPJ4

The kinetic energy of an electron is 45% of its total energy. Find the relativistic momentum of the electron. The rest

Answers

The relativistic momentum of the electron if the kinetic energy of an electron is 45% of its total energy is 2 times the square root of the rest mass of the electron times 45% of its total energy.

To determine the kinetic energy of an electron is 45% of its total energy, we can use the relativistic formula for total energy to find the rest energy of the electron. The formula is:

E = (m0c²) / √(1 - v²/c²)

where E is the total energy, m0 is the rest mass of the electron, c is the speed of light, and v is the velocity of the electron.

Since we are given that the kinetic energy is 45% of the total energy, we can write:

K = 0.45 × E

where K is the kinetic energy.

Using the formula for kinetic energy, we can write:

K = (p² / 2m0)

where p is the relativistic momentum of the electron.

Solving for p, we get:

p = √(2m0K)

Substituting K = 0.45E, we get:

p = √(0.9m0E)

To find E, we can use the fact that the kinetic energy plus the rest energy is equal to the total energy:

E = K / 0.45

Substituting this into the expression for p, we get:

p = √(0.9m0K / 0.45)

p = √(2m0K)

So the relativistic momentum of the electron is equal to the square root of twice the rest mass of the electron times its kinetic energy, which is 2 times the square root of the rest mass of the electron times 45% of its total energy.

Learn more about relativistic momentum: https://brainly.com/question/9864983

#SPJ11

A 1100-kg elevator is rising and its speed is increasing at 3.0 m/s2. The tension in the elevator cable is: Please note this is an elevator connected by a single elevator cable a) between 7500 and 8500 N b) between 8500 and 9500 N c) between 9500 and 10500 N

Answers

The tension in the elevator cable is 120910 N.

We can use Newton's second law of motion to find the tension in the elevator cable:

ΣF = ma

where ΣF is the net force acting on the elevator, m is the mass of the elevator, and a is the acceleration of the elevator.

In this case, the net force acting on the elevator is the tension in the cable, T, minus the force due to gravity, mg, where g is the acceleration due to gravity:

ΣF = T - mg

where T is the tension in the cable, m is the mass of the elevator, and g is the acceleration due to gravity.

The acceleration of the elevator is given as 3.0 m/[tex]s^2[/tex]. Substituting the given values, we get:

T - mg = ma

T = ma + mg = m(a + g)

T = 1100 kg (3.0 m/[tex]s^2[/tex] + 9.81 m/[tex]s^2[/tex]) = 120910 N

Therefore, the tension in the elevator cable is 120910 N.

Learn more about elevator cable

https://brainly.com/question/16092504

#SPJ4

Full Question ;

A 1100-kg elevator is rising and its speed is increasing at 3.0 m/s2. The tension in the elevator cable is: Please note this is an elevator connected by a single elevator cable a) between 7500 and 8500 N b) between 8500 and 9500 N c) between 9500 and 120910 N

16. Your company is considering building solar power arrays near the Arctic Circle in Alaska and Canada. What are some advantages and disadvantages of using these locations for solar power

Answers

Some advantages of using these locations for solar power include the long hours of sunlight during summer months, low population density, and potential environmental benefits. Disadvantages include the limited sunlight during winter months, harsh weather conditions, high installation costs, and potential challenges in connecting to the power grid.

(Advantages)
Long hours of sunlight during summer: In the summer months, the Arctic Circle experiences 24-hour sunlight, which can result in higher solar energy production during that period.Low population density: The Arctic Circle's low population density means there's plenty of space for large-scale solar installations, minimizing potential land use conflicts.Environmental benefits: Solar power is a clean and renewable energy source, which can contribute to reducing greenhouse gas emissions and help in mitigating climate change.

(Disadvantages)
Limited sunlight during winter months: In the winter months, the Arctic Circle experiences little to no sunlight, making solar power generation extremely limited during that time.Harsh weather conditions: The Arctic Circle's extreme cold, snow, and ice can cause damage to solar panels and other equipment, increasing maintenance costs. High installation costs: Due to the remote location and challenging environment, installation costs for solar power arrays can be significantly higher than in other regions.

To know more about potential visit:
https://brainly.com/question/16267680

#SPJ11

A 150kHz sinusoidal is to be sampled at a frequency, fs = 200kHz. What frequency will be observed when the signal is recovered? What if fs = 50kHz?

Answers

For fs = 200kHz, the observed frequency will be 50kHz. For fs = 50kHz, the observed frequency will be 50kHz (aliasing).

When sampling a sinusoidal signal, the highest frequency that can be accurately represented is fs/2 (the Nyquist frequency). If the input signal frequency is higher than fs/2, aliasing occurs and the signal is incorrectly reconstructed.

For fs = 200kHz and a 150kHz input signal, the observed frequency will be 200kHz - 150kHz = 50kHz. This is within the Nyquist frequency and can be accurately reconstructed.

For fs = 50kHz and a 150kHz input signal, the observed frequency will also be 50kHz (50kHz + 50kHz = 100kHz, which is the frequency that is aliased). The signal cannot be accurately reconstructed in this case.

Learn more about frequency here:

https://brainly.com/question/5102661

#SPJ11

assume a rectangular strip of a material with an electron density of n-5.8*10^20. the strip is 8mm wide and 1.1 mm thick and carries a current of 8a. find the hall voltage for a magnetic field

Answers

The hall voltage for a magnetic field can be calculated using the formula V_H = (IB)/ne, where I is the current, B is the magnetic field, n is the electron density, and e is the charge of an electron.

In this case, the electron density is given as n = 5.8*10^20, the current is I = 8A, and the dimensions of the strip are width = 8mm and thickness = 1.1mm. We need to find the hall voltage for a given magnetic field.

First, we need to calculate the cross-sectional area of the rectangular strip, which is given by A = width x thickness. Substituting the values, we get A = 8mm x 1.1mm = 8.8 mm^2.

Next, we need to calculate the charge density, which is given by p = ne. Substituting the values, we get p = (5.8*10^20) x (1.6*10^-19) = 0.928 C/m^3.

Now, we can calculate the hall voltage using the formula V_H = (IB)/ne. Substituting the values, we get V_H = (8A x 0.0088 m^2)/(0.928 C/m^3 x 1 T) = 0.084 V/T.

Therefore, the hall voltage for a magnetic field is 0.084 V/T.

learn more about magnetic field

https://brainly.com/question/14411049

#SPJ11

A 1.0kg block is attached to a spring with a spring constant of 16 N/m. While the block is at rest, a man hits it with a hammer and almost instantaneously gives it a speed of 40 cm/s. What are:

Answers

The initial potential energy is converted into kinetic energy, making the block oscillate with an amplitude of 5.0 cm.

When the man hits the block with the hammer, the initial potential energy of the spring is converted into kinetic energy of the block.

Using the equation for potential energy of a spring, we can calculate that the initial potential energy of the spring is 0.5 [tex]kx^2[/tex], where k is the spring constant and x is the displacement from the equilibrium position.

Since the block is initially at rest, x is equal to 0.

Therefore, the initial potential energy of the spring is 0.

The kinetic energy of the block is 0.5 [tex]mv^2,[/tex] where m is the mass of the block and v is the speed of the block. Substituting the values given in the question, we get the initial kinetic energy of the block as 8 J.

Since the total mechanical energy of the system is conserved, the initial potential energy of the spring is equal to the initial kinetic energy of the block.

Therefore, the maximum amplitude of the oscillations is given by A = (2K/[tex]mw^2)^0[/tex].5, where K is the initial kinetic energy, m is the mass of the block, and w is the angular frequency of oscillation.

Substituting the values, we get the amplitude as 5.0 cm.

For more such questions on kinetic energy, click on:

https://brainly.com/question/8101588

#SPJ11

Dark matter in galaxies and clusters of galaxies is purely hypothetical because we have no way of detecting its presence. True False

Answers

We have no method of detecting dark matter, hence its existence in galaxies and clusters of galaxies is totally hypothetical. This statement is false.

While dark matter cannot be directly observed through electromagnetic radiation, there is a significant amount of evidence that suggests its presence. The gravitational effects of dark matter can be observed through its influence on the motion of visible matter in galaxies and clusters of galaxies.

For example, observations of the rotational speeds of stars and gas in galaxies indicate that there is more mass present than can be accounted for by visible matter alone. This suggests the presence of additional matter that does not emit or absorb light, i.e. dark matter.

Similarly, observations of the gravitational lensing of light by clusters of galaxies also indicate the presence of an additional mass that is not visible. The distribution of this mass can be mapped and compared to the distribution of visible matter, providing further evidence for the existence of dark matter.

To learn more about dark matter

https://brainly.com/question/29265929

#SPJ4

if a sound beam moves from air into soft tissue at an incident angle of 60 degrees, how will the angle of the transmitted wave change

Answers

when the sound beam moves from air into the soft tissue at an incident angle of 60 degrees, the angle of the transmitted wave will be approximately 11.2 degrees.

When a sound beam moves from one medium to another, its angle of incidence and angle of transmission are related by Snell's Law. In this case, the sound beam moves from air into the soft tissue at an incident angle of 60 degrees.

Step 1: Find the speed of sound in both media. The speed of sound in air is approximately 343 m/s, while the speed of sound in soft tissue is around 1540 m/s.

Step 2: Calculate the sine of the incident angle, which is 60 degrees. Using a calculator or trigonometric table, sin(60°) ≈ 0.866.

Step 3: Apply Snell's Law, which states: (speed of sound in air/speed of sound in soft tissue) × sin(incident angle) = sin(transmitted angle)

Step 4: Substitute the values into Snell's Law equation: (343 / 1540) × 0.866 = sin(transmitted angle)

Step 5: Calculate sin(transmitted angle): (343 / 1540) × 0.866 ≈ 0.193

Step 6: Find the transmitted angle by calculating the inverse sine (arcsin) of 0.193: arcsin(0.193) ≈ 11.2 degrees

So, when the sound beam moves from air into the soft tissue at an incident angle of 60 degrees, the angle of the transmitted wave will be approximately 11.2 degrees.

For more information on Snell's Law visit:

brainly.com/question/2273464

#SPJ11

a damped oscillator with a period of 30 s shows a reduction of 30% in amplitude after 1 min. calculate the percent loss l of mechanical energy per cycle

Answers

The percent loss of mechanical energy per cycle in this damped oscillator is approximately 70%.

To calculate the percent loss of mechanical energy per cycle in the given scenario, we first need to find the number of cycles that occur in one minute.

One cycle of a damped oscillator takes two periods, so in one minute (60 seconds), there are 60/30 = 2 cycles.

Now we can calculate the percent loss of mechanical energy per cycle:

- The percent reduction in amplitude after 1 minute is 30%, which means the amplitude has decreased to 70% of its original value.
- The mechanical energy of a simple harmonic oscillator is proportional to the square of its amplitude. Therefore, the mechanical energy of the damped oscillator after 1 minute is only (0.7)^2 = 0.49, or 49% of its original value.
- Since we have two cycles in one minute, the percent loss of mechanical energy per cycle is the square root of 0.49, which is approximately 0.7 or 70%.

Therefore, the percent loss of mechanical energy per cycle in this damped oscillator is approximately 70%.

Learn more about "mechanical energy": https://brainly.com/question/30403434

#SPJ11

A Transformer Supplying A House With 240/120 V Has A Secondary That Is Center Tapped. The Conductor Connected (2024)

FAQs

A Transformer Supplying A House With 240/120 V Has A Secondary That Is Center Tapped. The Conductor Connected? ›

Expert-Verified Answer

What is the center tap on the secondary of a transformer? ›

A common application of a center tap on the secondary of a transformer is to provide a split-voltage output for circuits that need both positive and negative voltages, or dual voltage supplies. This is based on Faraday's law of induction, with a center tap acting as a neutral reference point.

Where are center-tapped transformers used and what is the purpose of the center tap? ›

In analog telecommunications systems center-tapped transformers can be used to provide a DC path around an AC coupled amplifier for signalling purposes. Three wire power distribution can be used, e. g. with 240 VCT to provide two 120 VAC circuits in US/Canada. Low-frequency mains transformers often have center taps.

How do you know if a transformer is center-tapped? ›

Most European/American dual-voltage transformers have two separate primaries that can be connected in series or parallel depending on the voltage. Connect any two windings to 115V and see what voltage is on the third wire. If you get 57.5V then that wire is the centre tap.

Which industrial use transformer normally has 240v or 480v primary and a 120v secondary is called a? ›

The correct answer is "control" because a control transformer is typically used in industrial settings to provide power for control circuits. These transformers have a primary voltage of either 240v or 480v and a secondary voltage of 120v, which is suitable for powering control devices and equipment.

What is the Centre tap transformer connection? ›

When an additional wire is connected across the exact middle point of the secondary winding of a transformer, it is called a center tapped transformer. The wire is adjusted such that it falls in the exact middle point of the secondary winding and is thus at zero volts, forming the neutral point for the winding.

Is the center tap of a transformer the neutral? ›

A centre tapped transformer has an extra wire connected to the exact midpoint of its secondry winding. this type of transformer can be used in a variety of applications, including. It is one where the secondary winding is center tapped and usually grounded to become the neutral.

How does a 110V centre tapped transformer work? ›

In a 110V CTE system, instead of the neutral lead, the centre tap is connected to the supply earth. This system has no neutral, therefore caution must be taken to ensure that no live lead is earthed. Short-circuit may occur and may lead to system power failure.

What is the primary function of a center-tapped transformer in a power supply? ›

Why do we use a center tapped transformer? The primary difference is that a normal transformer provides you with only one voltage, for example, say 240 V. But a center tapped transformer will provide you with two voltages each of 240/ 2 i.e. 120 V, so that we can drive two independent circuits.

What is centre tapped transformer to DC? ›

Convert AC to DC by Centre Tapped Rectifier
  • Step 1: Take All Materials As Shown. Materials required - ...
  • Step 2: Connect Diodes. This transformer is 12-0-12.It converts 220V AC to 12V AC. ...
  • Step 3: Connect Cathode of Both Diodes. ...
  • Step 4: Solder Capacitor. ...
  • Step 5: Connect Wires for Output.

Where is the tap on a transformer? ›

Taps are provided on the designed Primary of the Transformer, usually located on the face of the coils of a Ventilated unit. The purpose of a tap is to provide the customer with connection points on the Primary coil so as to compensate for poor incoming/source voltage.

How do you check a transformer to see if it's good? ›

Set the meter to read 24 volts AC and look for this on the outer two wires of the 3 wires at the top of the transformer. If there is no voltage there then the transformer itself is faulty and you need to replace the transformer. If there is no power go further back on the line and measure the voltage.

What is the output of a center tap transformer? ›

Unlike a standard transformer that provides a single output voltage, a center-tapped transformer divides the secondary voltage into two equal parts. This design is advantageous in various applications, such as supplying two 120V outputs from a 240V source in residential systems.

What is the secondary circuit of a transformer? ›

Secondary circuits are those circuits supplied from transformer output windings that are electrically separated from the input windings. A transformer is an electrical component that can be used to step up or down the input ac voltage signal.

What is a transformer secondary? ›

Winding - Transformers have two windings, being the primary winding and the secondary winding. The primary winding is the coil that draws power from the source. The secondary winding is the coil that delivers the energy at the transformed or changed voltage to the load.

Do you ground the center tap transformer? ›

A centre tap is a connection made from the centre of the secondary winding of a transformer. It is labeled as Earth, Common or 0V. Grounding secondary winding of a transformer is usually done by connecting the earth to the neutral lead.

What are the taps on a transformer? ›

Transformer voltage adjustment taps are physical connection points on transformer windings which allow incremental adjustments to the input voltage rating of the transformer to maintain the correct secondary voltage when the primary is higher or lower than expected.

What is the difference between center tap and non center tap transformer? ›

The primary difference is that a normal transformer outputs a single voltage. However, a center-tapped transformer provides you with three voltages depending on where you draw the voltage.

Is a transformer secondary a tap? ›

Transformer secondary conductors are often considered “tap conductors”. Most often, transformer secondary conductors are protected in accordance with 240.21(C)(2) or 240.21(C)(6). Regardless of which requirement is met, short-circuit protection of transformer secondary conductors should be explored.

Top Articles
Complete Vocal Technique
Vocal Modes in der Complete Vocal Technique (CVT) — Tanja Lipp | singen lernen 40+
Does Shell Gas Station Sell Pregnancy Tests
Best Seafood Buffet In Laughlin Nevada
Abga Gestation Calculator
Busted Newspaper Birmingham Al
How To Pay My Big Lots Credit Card
Recruitment Drive/Quick guide
Adventhealth Employee Hub Login
Chesapeake Wv Topix
Public Agent.502
Best Bread for Gut Health
Mypdr
Schüleraustausch Neuseeland - Schulabschluss mit Study Nelson
Jennifer Paeyeneers Wikipedia
Die 12 besten Chrome Video Downloader im Überblick
Trizzle Aarp
Black Panther Pitbull Puppy For Sale
Berkeley Law Bookstore
Server - GIGABYTE Costa Rica
Decree Of Spite Poe
Poe Poison Srs
Chatzy Spanking
Harris Teeter Weekly Ad Williamsburg Va
Eddie Messel Leaving 1011
Usc Human Biology
Fototour verlassener Fliegerhorst Schönwald [Lost Place Brandenburg]
Adventhealth Employee Handbook 2022
Meet Kristine Saryan, Scott Patterson’s Wife
Hewn New Bedford
South Park Old Fashioned Gif
Terraria Water Gun
Ketchum Who's Gotta Catch Em All Crossword Clue
Nikki Porsche Girl Head
Methstreams Boxing Live
Wjar Channel 10 Providence
Tani Ahrefs
Scarabaeidae), with a key to related species – Revista Mexicana de Biodiversidad
Cardholder.bhnincentives.com
Metro By T Mobile Sign In
Urgent Care Pelham Nh
Waffle House Gift Card Cvs
ExtraCare Rewards at the Pharmacy – Target | CVS
Us 25 Yard Sale Map
Kronos.nyp
Katmovie.hs
100.2华氏度是多少摄氏度
Hit Entertainment Wiki
How a fringe online claim about immigrants eating pets made its way to the debate stage
Salmon Fest 2023 Lineup
Chase Bank Time Hours
Upgrading Fedora Linux to a New Release
Latest Posts
Article information

Author: Kerri Lueilwitz

Last Updated:

Views: 5999

Rating: 4.7 / 5 (67 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Kerri Lueilwitz

Birthday: 1992-10-31

Address: Suite 878 3699 Chantelle Roads, Colebury, NC 68599

Phone: +6111989609516

Job: Chief Farming Manager

Hobby: Mycology, Stone skipping, Dowsing, Whittling, Taxidermy, Sand art, Roller skating

Introduction: My name is Kerri Lueilwitz, I am a courageous, gentle, quaint, thankful, outstanding, brave, vast person who loves writing and wants to share my knowledge and understanding with you.